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ABSTRACT 
 

A nonlinear variational model is proposed for the simulations of one directional 

disparity map using FEM(finite element method) based numerical scheme for the 

given Total Variation (TV) stereo problem. Our main goal is to study the 

appropriate selection of local smoothness parameters chosen in a uniform way and 

their regularization effects on the disparity image with the triangular grids as 

computational domain.   
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1. INTRODUCTION 

The efficient numerical solution of partial differential 

equations (PDEs) plays an important role in the 

engineering problems. This demand and the ever 

increasing computational power from current computer 

hardware have brought the rapid development of 

numerical methods for partial differential equations, a 

development that encompasses convergence analysis and 

implementation aspects of software packages and 

programming languages like [16 (FreeFem++)]. In this 

presentation we consider the TV stereo model to estimate 

the disparity map from two consecutive frames of same 

stereo scene.  

The estimation of one directional disparity maps from the 

same image scene is one of the classical problems of 

image analysis research but due to the ambiguities in 

camera settings and aperture problem this research task is 

still challenging for image practitioners.  Once this one 

directional displacement is computed accurately then it is 

possible to measure the distance between camera and the 

object. This measurement has many possible applications 

in driver assistance systems and auto aircrafts without 

pilots.   

As the TV and Perona-Malik regularizations are  the most 

popular regularization approaches for computer vision 

problems especially for the image restoration and Image  

 

 

 

 

motion problems [1-6, 8, 9, 14, 15, 18-20] and variational 

stereo methods [7, 10, 11, 20]. 

It is observed from the available literature on PDEs based 

approaches in image processing and computer vision [6, 

9, 10, and 16] that usually the practitioners use finite 

difference methods using rectangular grids for the PDEs 

based image processing. This work provides an efficient 

computational approach based on adaptive finite element 

method (FEM) using triangular grid.   

2. TV STEREO MODEL 

We consider the following TV stereo model to compute 

the disparity map u  between the stereo image pair 

RR: →×ΩI  

( ) ( ( ( )) ( ( ), )) ....(1)E u u D I x u dxα ψ
Ω

= ∇ +∫  

where 

22( ) ..................................(2)u uβψ β∇ = + ∇

 

 Is the smoothness part and the 

1

2( ( ), ) ( ) ....................................(3)x tD I x u I I= +
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Is called the data term which comes from the grey value 

constancy assumption 

( , 1) ( , ).....................................(4)I x u t I x t+ + =

 We set Ω∈= Txxx ),( 21
, here the two dimensional 

image domain is denoted as 
2R∈Ω  and the terms  

tII ,
1x  denote the derivatives with respect to 1x  and t  

respectively. α is strictly positive smoothness parameter.  

For computation of disparity we use the energy 

minimization technique and we recall the following 

famous and basic result from the calculus of variations [6, 

11]. The minimization of given two dimensional general 

energy functional  

1 21 2( ) ( , , , , ) .....................(5)x xE u F x x u u u dx
Ω

= ∫  

Satisfy the Euler’s-Lagrange Equation  

0
2211
=∂−∂−

xuxxuxu FFF
      

with natural boundary condition  

Ω∂=
∂
∂

on
n

u
,0     

Where n  is outward normal to the boundary Ω∂ , 

applying this direct result from the calculus of variations 

the computation of u  is obtained from the minimization 

of energy functional (1) which yields the associated 

Euler’s-Lagrange equation given as 

1 1

2

22

0 div ( ) ......(6)
x x t

u
I u I I in

u

α

β

 
∇ = − + + Ω

 + ∇ 

 

Where Ω∂=
∂
∂

on
n

u
,0 , β  is very small smoothness 

parameter which is used to avoid the zero division in TV 

regularizer. The equation (6) is a steady state solution of 

the gradient system  

 
1 1

2

22

div ( ) ........(7)t x x t

u
u I u I I

u

α

β

 
∇ ∂ = − + +

 + ∇ 

 

ut∂  denotes the partial derivative of u  with respect to 

t .  Variational formula for (7) can be derived as 

( , ) ( , ) ( , )..................................(8)
u

v b u v l f v
t

∂
+ =

∂
 

Where we set tx IIf
1

−= , one is therefore interested to 

compute )(1 Ω∈Hu  where  

1

2

22

1

( , )

( , ) .................

x

u v
b u v dx I u v dx

u

l u v f v dx v H X

α

βΩ Ω

Ω

  
∇ ⋅∇  = + ⋅

  + ∇  


= ⋅ ∀ ∈ ⊆


∫ ∫

∫

 

 

 

(9) 

1H is a Sobolev space which is defined as  

{ }2221 ))((:)()( Ω∈∇Ω∈=Ω LuLuH  

For further details about Sobolev spaces and specifically 

)(2 ΩL  spaces and their corresponding norms we refer 

the reader to review the basic theory of finite elements 

and Sobolev spaces in [12, 13]. 

3. FEM BASED NUMERICAL SCHEME:  

We numerically solve the problem equation (8) on the 

following  

Discrete space  

{ })(,)(: 1

0
KPvTKCvX

Khhhh ∈∈∀Ω∈=  

Here  XX h ⊂  is the discrete space with 1P  finite 

elements. 
0C  is the space of continuous functions.  The 

computational domain is considered as a triangular grid 

hT  with maximum size of each element 0>h .                                                                                     

Where )(1 KP  denotes the  space of all polynomials 

functions having degree equal to one. To solve the week 

problem (8) on discrete space hX  the following implicit 

approximating scheme is proposed which is designed 

using both FEM (Finite Element method) and FDM 

(Finite difference method).  The time derivative is 

discretized using forward difference operator. 

1( ) ............................(10)K KI A U U Lατ τ++ = +
 

Where   

[ ]1 2, , ..., ..........................................(11)NU u u u=

The 
Nuuu ...,,, 21

 are the smoothed disparity map grey 

values corresponding to the N number of nodes on 

triangular grid. The vector  L  is obtained from ),( vfl .  
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As the given bilinear form in equation (9) is symmetric 

and positive definite. The given implicit numerical 

scheme is unconditionally stable. 

4. NUMERICAL  RESULTS AND DISCUSSION  

We consider a famous example of stereo pair Pentagon. 

The aerial view of Pentagon stereo pair with gray value 

images were downloaded from http:/vasc.ri.cmu.edu/idb/. 

Our goal is to check the disparity map for different 

uniformly selected values of smoothing parameter α  

specifically for the given FEM based numerical scheme. 

The value of small contrast parameter β   is kept fixed 

for all experiments as 0.00005=β . Table1 & and 

Figure.1 show the Plot for the average disparity values for 

various choices of α . From the Figure .1  it is observed 

that the values of disparity map intensity slightly 

increases as we decrease the values of smoothness 

parameter α . The image results for the computed 

disparity maps on various fixed values of α  are shown in 

the Figure2.(a-n).  As the value of α  is decreased, the 

grid is refined almost everywhere on the domain. We 

observe that some blurring effects appear in the computed 

disparity map with very small values of α , consequently, 

some useful information  from the disparity map images 

become disappear. From overall performance of this 

particular numerical scheme, we have observed that with 

good visual quality disparity results were found 

when 15.0 <≤α . As these variational methods have 

some drawback from the computational point of view in 

the sense that they create some computational ambiguities 

in the disparity map estimation at all pixels of disparity 

image. Keeping this all in view we propose some reliable 

regularization estimates and a novel regularization 

approach which is based on the a posteriori estimates and 

an intelligent algorithm which automatically identifies the 

damaged regions of the disparity image and regularizes. 

Such type of the intelligent regularization control for this 

problem will appear in our forth coming papers. 

5. CONCLUSION 

Study of locally adaptive selection of smoothness 

parameters is given in this paper for the disparity map 

estimation from successful implementation of the 

variational model (1) using the Finite element method on 

the triangular grid as domain of computation. The 

observed results are given in table.1, Figure.1 and the 

obtained disparity map images are given in Figure. 2 (a-

n). From overall performance of this particular numerical 

scheme, we have observed that with good visual quality 

disparity map results were found when 15.0 <≤α . 

Table 1.Average disparity values for various values of α  

  alpha Average  Disparity 

1000 0.0823566 

500 0.109637 

200 0.146255 

100 0.17477 

50 0.20208 

20 0.23333 

5 0.265949 

0.9 0.291454 

0.5 0.3006 

0.1 0.348697 

0.01 0.527864 

0.001 0.859375 
 

 

Figure 1. The plot of Average Disparity map for chosen local 

smoothness parameters. 

  

(a) Left Image Pentagon Stereo 

Pair 

(b) Time Derivative (f1-f2) 
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(c) Stereo Depth at 1000=α  (d) Stereo Depth at  

500=α  

  

(e) Stereo Depth at 200α =  (f) Stereo Depth at 100α =  

  

(g) Stereo Depth at 50α =  (h) Stereo Depth at 20α =  

  

(i) Stereo Depth at 5α =  (j) Stereo Depth at 0.9α =  

  

(k) Stereo Depth at 0.5α =  (l) Stereo Depth at 0.1α =  

  

(m) Stereo Depth at 0.01α =  (n) Stereo Depth at 

0.001α =  

Figure 2.  Computed Disparity map results for various choices 

of the regularization parameterα . 
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