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ABSTRACT 

 

Electrical power system (EPS) is becoming more complex and non-linear due to its 

varying operating conditions. In order to keep EPS in the steady state condition, 

active power (P) or terminal voltage (Vt) and reactive power (Q) or frequency (f) 

must be controlled and maintained continuously. The response of the transient 

stability (terminal voltage) can be improved by adopting suitable controller as an 

additional voltage controller with the automatic voltage regulator (AVR) in the 

excitation system, whereas the dynamic stability (frequency deviations i.e ∆ω) can 

be enhanced with governing system.  In power system networks, low frequency 

oscillations have become a major concern for many years. In order to depress low 

frequency oscillation, the power system stabilizer (PSS) parameters must be 

adjusted when there are changes in power system network conditions. This paper 

presents the application of multilayer perceptron feedforward neural network 

(MLPFFNN) as a controller to tune PSS parameters for achieving better 

enhancement in stability. For training MLP neural network, real power (P) and 

reactive power (Q) of synchronous machine are chosen as the input signals and the 

output are; the desired power network stabilizer parameters. The proposed 

controller is implemented as single machine connected at infinite bus (SMIB) and 

compared with conventional controllers using Matlab/Simulink. The results 

obtained show the promising results due to the improvement in terminal voltage (Vt) 

as well as frequency deviation (∆ω). 

Keywords:  Synchronous generator, Power system stabilizer, Feedforward neural networks, Multilayer perceptron, 

Transient and dynamic stability, Matlab/simulink.  

1. INTRODUCTION 

The control of active power and reactive power is very 

important to maintain the system in steady state condition 

[1]. The excitation system of the synchronous generator 

with automatic voltage regulator (AVR) controls the 

generated electromotive force (emf) and therefore 

maintains not only the reactive power flow but the power 

factor and current magnitude as well. The governor 

together with load frequency control  (LFC)  regulates the 

frequency  of  the generator and maintains the real power 

[2-8].  

The power network is always complex and nonlinear due 

to continuously variation of loading  conditions  and is  

 

 

 

being subjected to small perturbations. The modern fast 

acting, high gain automatic voltage regulators (AVR) 

cause the poor oscillations or damping characteristics 

which deviate the rotor angle of the generator (δ).  

These high gain AVRs cause a large phase lag at low 

system frequencies which are greater than the excitation 

system frequency. Therefore AVR has an important effect 

of minimizing synchronizing torque during sudden 

disturbances but it affects the damping torque negatively 

[3-8].  

In power system networks, damping torque or low  
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frequency oscillations become a major concern for many 

years. To offset this effect and to improve the system 

damping in general, a new signal producing torques in 

phase with the rotor speed are introduced. This 

supplementary stabilizing signal is known as “Power 

System Stabilizer (PSS)” of network. In order to depress 

low frequency oscillation, the power system stabilizer 

parameters must be adjusted when there are changes in 

power network conditions. 

Various techniques of PSS parameters based on optimal 

variable structure control (OVSC), adaptive control (AC), 

and intelligent controls have been proposed to design PSS 

[9-15]. The artificial intelligent (AI) methods such as 

genetic algorithm G.A), simulated Annealing, Tabu 

Search, evolutionary programming and multi agent 

particle swarm optimization (MAPSO) for obtaining PSS 

parameters [16-20], self-tuning PSS [21], PI, PID, and 

Fuzzy based PSS [22-24], and Fuzzy set and NNs [25] are 

also suggested in literature. 

These conventional power system stabilizers possess fix 

parameters and operate at particular loading conditions.  

These PSSs need tuning in case of changing loading 

conditions. The main limitation of such PSS is that it 

takes a large amount of computing time for on-line 

parameter identification and also need knowledge based, 

and membership functions which are defined off-line, and 

kept unchanged during the online operation.   

For this problem, we need a power system stabilizer, 

which should possess self-learning, adaptation, 

approximation and artificial intelligence properties of 

handling the changes and uncertainties in the system in on 

and off-lines.  

The neural network (NN) possesses great prospective 

capabilities because they have been developed on logical 

mathematical formulation and versatile and well-known 

mathematical back grounds [26].  

Due to these problems an artificial neural network based 

PSS is proposed by taking angular frequency as an input 

to improve the transient and dynamic stability of 

electrical power system.  

Feedforward multilayer perceptron (MLP) neural network 

with back propagation (BP) algorithms based PSS is 

proposed in this paper. The simulations results using 

Matlab/Simulink and neural network toolbox are 

compared with conventional, PID and proposed PSS. The 

applicability and suitability of the proposed PSS are 

investigated and the improvements in transient & steady 

state stability enhancement are discussed in detail.     

2. MODEL OF A POWER SYSTEM 

For the improvement of dynamic stability of an 

interconnected power system, a single synchronous 

generator connected to an infinite bus (SMIB) system is 

taken into consideration. The synchronous generator 

connected to a bulk network of a transmission line can be 

represented as Thevenin’s equivalent circuit with external 

impedance (Re + jXe) [1, 4-8]. Figure 1 shows the 

equivalent circuit of SMIB. 

 

Figure 1: A single synchronous machine connected to an infinite 
bus (SMIB) 

A simple linearized model of synchronous generator and 

excitation system is developed based on the linear model. 

The linearized equations for the synchronous machine are 

given by (the ∆ subscripts are dropped for convenience) 

[1]. 
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From the torque equation we have 

ω
τ

D
E

τ

K
δ

τ

K

τ

T
ω

j
q

j

2

j

1

j

m














−′













−













−=ɺ  (5) 

By the definition of ∆ω  

ωδ =ɺ   

The complete state-space model of the synchronous 

generator with excitation system is given by  
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The state space model is represented with the excitation 

system only with state variables given by [1] 
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The VREF and Tm are the driving functions by assuming 

that SV is zero [1].     

3.  ARTIFICIAL NEURAL NETWORKS (ANNs) 

An artificial neural network (ANN) is a computational 

structure that is inspired by a crude electronic model 

based on biological nervous system in the brain. A neuron 

can be compared to the human brain in two ways. First, 

the network gets the information from its surroundings 

through a training process. Second, the neural network 

stores the acquired information within inter-neuron conn-

ection strengths or synaptic weights [4-5], [7-8], [26]. 

A learning rule, also referred as a training algorithm of a 

neural network, is used for adapting the weights and 

biases of a neural network and for training the network to 

perform a particular task. The learning mechanism adapts 

the weights of the different architectures and hence leads 

to a modification in the strength of interconnection. The 

selection of type of learning depends upon the behavior in 

which the parameter changes take place. There are two 

broad categories of learning rules in a neural network i.e., 

supervised learning and unsupervised learning [7-8], [26-

28]. 

3.1 MULTILAYER PERCEPTRON NEURAL NETWORK 

(MLPNN) 

Multilayer feedforward network is a particular type of 

neural networks. It consists of a set of source nodes which 

forms the input layer, one or more hidden layers, and one 

output layer. The input signal is applied in a forward 

direction through the network, on a layer-by-layer basis as 

shown in figure 2. 

Multilayer perceptron networks are applied successfully 

for solving some difficult and complex problems by 

training them in a supervised learning scheme with a 

highly popular back-propagation algorithm. The back-

propagation algorithm is based on the error-correction 

learning rule [4-5], [7-8], [26-28].  

A multilayer perceptron network contains one input layer, 

one or more hidden layers and one output layer. The input 

layer consists of input data of the network. The hidden 

layer consists of computational nodes known as hidden 

neurons. The hidden neurons perform function of the 

interaction between the external input and network output 

in an efficient manner and extraction of higher order 

statistics. The function of the source nodes, in input layer 

of network, is to supply the input signal to neurons in the 

second layer (1
st
 hidden layer). The 2

nd
 layer’s output 

signals are applied as inputs to the third layer and so on. 

The set of output signals constitutes the overall response 

of network to the activation pattern supplied by source 

nodes in the input first layer [7-8], [26-28]. 

 

Figure 2: A multilayer feedforward neural network (MLPNN) 

The back-propagation learning algorithm is applied for 

training multilayer perceptron (MLP) networks which is 

based on supervised learning. The algorithm is applied for 

adapting weights and biases of the neural network and 

reducing the error in its predictions on the training set  

[7-8], [26-28].  

3.1.1 Levenberg-Marquardt Backpropagation 

Levenberg-Marquardt is the fastest version of back-

propagation algorithm. It is highly recommended as a 

favourite supervised algorithm, although it needs more 

memory than other algorithms [7-8]. The algorithm has 

been developed to approach second-order training speed 

without solving the Hessian matrix. For training 

feedforward networks the performance function takes the 

form of a sum of squares, therefore the Hessian matrix 

has been approximated as: 

JTJH =     (7) 

 The gradient can be solved as 
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eTJg =      (8) 

Where J refers to a Jacobian matrix consisting of first 

derivatives of the network errors with respect to the 

weights and biases, and e represents network vector 

errors. The Jacobian matrix can be easily solved through a 

standard BP technique which is simpler than the Hessian 

matrix. 

The algorithm applies this approximation to the Hessian 

matrix as: 
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This algorithm is the fastest scheme for learning 

moderate-sized multilayer perceptron neural networks. 

There is an efficient application of the algorithm in 

MATLAB software; because the evaluation of the matrix 

equation in MATLAB is a built-in function therefore its 

attributes become even more pronounced. 

4. MODEL OF SYNCHRONOUS MACHINE WITH 

MLP FFNN BASED PSS 

The complete linearized model of synchronous generator 

with AVR and feedforward neural network based PSS is 

shown in figure 3 with their parameters. The input to the 

proposed power system stabilizer is speed/frequency and 

output is applied at the summing junction of the reference 

voltage [1, 6].  

The methodology and results are discussed in detail to 

investigate the performance of a single machine infinite 

bus using MLP feedforward neural network PSS and 

comparing with conventional power system stabilizers.   

A multilayer perceptron FFNN has been trained with the 

Levenberg-Marquardt back-propagation (BP) learning 

algorithm which is based on the supervised learning of 

artificial neural networks. The Levenberg-Marquardt BP 

is used because it is faster than the ordinary BP algorithm 

[7-8]. In this work, the network is trained to behave as a 

special type of a conventional controller. Inputs and target 

data for training of neural network are created from the 

input and the output of that controller in a closed loop 

fashion in conjunction with the plant. 

Proposed MLP power system stabilizer is developed 

considering PID controller as input for the network during 

the training process. Neural network controller created in 

this way will have unique arrangement, which will remain 

constant once the training process is completed. The 

resulting controller includes more predictable charact-

eristics which can be found in various types of self-

adaptive control systems. 
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Figure 3: Linear model of synchronous machine with MLP 
FFNN based PSS 

The selection of a suitable network structure is crucial for 

a particular application. A single hidden layer MLP 

network constitutes a universal approximation property. 

The network learns faster if hyperbolic tangent transfer 

function is used as the nonlinear activation function of 

hidden layer neurons. The number of hidden layer 

neurons is to be found by some trial and error procedure. 

Since the approach is based on the supervised learning of 

neural networks, hence the data for training (inputs and 

the target of the network) must be available. For this 

purpose, we recorded three inputs at the PID incoming 

signal and one output signal outgoing form PID. Figure 4 

shows the MLP network for the model. 

 

Figure 4: Multilayer perceptron network for PID power system 
stabilization 

The three inputs of PID controller gain are applied as 

inputs to the input layer of the multilayer perceptron 

neural network. Terminal voltage and speed are the two 

required outputs of the proposed system.   

A feedforward multilayer perceptron neural network has 

two layers. The first layer is a hidden layer which has 

weights coming from the input. It uses tangent sigmoid 

(tansig) transfer function. The second layer is the network 
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output. The weights and biases are initialized and adapted 

with a specified learning scheme. The network is trained 

with specified hyperbolic tangent sigmoid transfer 

function. The performance of the network is measured 

according to the predetermined performance function. 

The learning parameters are as: Show = 5, i.e., after every 

5
th

 iteration the result is shown, Learning rate = 0.05, 

Epochs = 10000, it is the maximum number of iterations, 

Goal = 1e-6. For training of MLP network Levenberg-

Marquardt BP supervised learning algorithm has been 

applied. This is the faster than the ordinary back-

propagation algorithm. 

5.  SIMULATION RESULTS 

5.1 At normal loading conditions 

Transient responses of terminal voltages (Vt):  
The transient responses of terminal voltages are shown 

below with normal loading conditions (P= 1.0 pu and Q= 

0.62 pu). The simulation result of terminal voltage shows 

the transient responses with conventional and proposed 

PSS in figure 5. The settling and rise time  characteristics 

show the improvement in transient  responses  with  better 

applicability,   suitability,   simplicity,  and  efficiency  of 
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Figure 5: Combined responses of terminal voltage with convent-

ional, PID and MLP-PSS 

MLP-PSS over all other power system stabilizers.  

Dynamic performance of frequency deviation (∆ω):  
The performance of the proposed MLP power system 

stabilizer in case of dynamic response of speed/frequency 

deviation is investigated at loading conditions (P= 1.0 pu 

and Q= 0.62 pu) as shown in figure 6. 

At normal loading conditions figure 6 shows the better 

settling and rise time characteristics of proposed PSS 

which improves dynamic responses with better 

performance in frequency deviation over all other 

conventional PSS. 
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Figure 6: Combined response of frequency deviation with Con-
ventional, PID and proposed MLP PSS 

5.2 At 10% increase in loading conditions 

Now the performance of the multilayer perceptron PSS is 

investigated by increasing a 10% load on the synchronous 

generator.  

Transient responses of terminal voltages (Vt) at 10% 

increase  

In figure 7, the terminal voltage response is investigated 

at 10% increase in step change after 0.4 seconds with 

conventional and proposed PSS. 
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Figure 7: Combined response of terminal voltage with Conve-

ntional, PID and proposed MLP PSS at 10% change 
in load. 

Dynamic performance of frequency deviation (∆ω) at 

10% increase: 

Figure 8 shows that the dynamic responses of frequency 

deviations of all PSS at 10% increase in loading 

conditions after 0.4 seconds. Figure 7 and 8 compare the 

responses of a conventional and MLP PSS at 10% loading 

change and prove that the MLP is better for transient and 

dynamic responses. 
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Figure 8: Combined responses of frequency deviation with Co-
nventional, PID and MLP-PSS at 10% change in load. 

6. CONCLUSIONS   

In power system networks, low frequency oscillations 

have become a major concern for many years. In order to 

depress low frequency oscillation, the power system 

stabilizer parameters must be adjusted when there are 

changes in power network conditions. 

This work proposes the suitable applicability of multi-

layer perceptron feedforward neural network power 

system stabilizer as controller to tune the power system 

stabilizer parameters for achieving better enhancement in 

stability. MLPFFNN PSS is developed with the help of 

PID-PSS in parallel and compared the responses with the 

performances of transient and dynamic responses at 

normal and 10% changing in operation conditions. For 

training MLP neural network, real power and reactive 

power of synchronous machine are chosen as the input 

signals and the output are; the desired power network 

stabilizer parameters. 

The simulation results with comparisons of rise time, 

settling time and overshoot indicate that the FFNN-PSS 

control system ensures improved performances in 

transient response of terminal voltages and dynamic 

stability in case of angular speed/frequency at normal as 

well as at changing operating conditions.   

The particular conclusions concerned the MLP architec-

tures: 

• MLP networks architectures construct seven neurons 

in input (hidden) layer and its activation transfer 

function is hyperbolic tangent sigmoid. Only one 

neuron in output layer is created and its linear 

activation transfer function is ample for reasonable 

presentation. 

• Popular back propagation with Levenberg-Marquardt 

algorithm is utilized for the upgrading  in the training 

time.  

• It is observed in this work, that a small number of 

hidden layer neurons are desirable for the 

development of MLP networks for the designing of 

power system stabilization system of electrical power 

system.  . 
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