ELLIPTIC CURVES WITH MANY POINTS OVER A SMALL FINITE FIELD M. A. Soomro*, A.H. Sheikh** and S. H. Sandilo* ## **ABSTRACT** This note contains examples of elliptic curvs with maximal possible number of rational points over a finite field F_q . More precisely this is done for every $\mathbf{q} = \mathbf{p}^n$ with $p \leq 19$ a prime number and $1 < n \leq 5$ and also for all $q = p \leq 97$ a prime number. The examples were computed using the computer algebra package Maple and the free mathematics software system Sage. Keywords: Elliptic Curves, Finite fields ## 1. INTRODUCTION We denote by $N_q(1)$ the maximal number of rational points that an elliptic curve E over a finite field F_q of cardinality q can have. A result of Deuring and Waterhouse (see [4, Thm. 4.1]); for an exposition see also [1, p. 15-16]) states that $$N_q(1) = \frac{q+m \text{ if } q = p^e \& e \ge 5 \text{ is odd } \& p \mid m;}{q+m+1}$$ otherwise. Here p is the characteristic of F_q and m is the largest integer less than or equal to $2\sqrt{q}$. In this research, we present, for many small q, an elliptic curve over F_q attaining this bound. ### 2. THE PRIME FIELDS Over F_2 the equation $y^2 + y = x^3 + x$ defines an elliptic curve with $N_2(1) = 5$ rational points. For odd prime numbers p, we search over equations $y^2 = x^3 + ax + b$ satisfying $4a^3 + 27b^2 \neq 0$ in order to find an example with $N_p(1) = p + 1 + \lfloor 2\sqrt{p} \rfloor$ rational points. Using Maple, this is very simple for small p. The result is given in the Table (1). ### 3. FIELDS OF CARDINALITY p^2 To find examples of elliptic curves over F_{p^2} having $N_{p^2}(1) = p^2 + 1 + 2p$ rational points, we use the following lemma. **Lemma 3.1** Suppose E / F_q is an elliptic curve. Then $$\#E(F_{a^2}) = q^2 + 1 + 2q \Leftrightarrow \#E(F_a) = q + 1.$$ #### **Proof** By Chap. V, Sec. 2 in [3] and Chap. IV, Sec. 3 in [5]. Let $$\#\mathbb{E}(\mathbb{F}_q) = q + 1 - a$$. Write $X^2 - aX + q = (X - \alpha)(X - \beta)$ with $\alpha, \beta \in \mathbb{C}$. Then $$#E(F)_{a^n} = q^n + 1 - \alpha^n - \beta^n$$ for all $n \ge 1$. So in particular one has $\#E(F_{q^2}) = q^2 + 1 - \alpha^2 - \beta^2$. This implies $$#E(F_{q^2}) = q^2 + 1 + 2q$$ $$\Leftrightarrow \alpha^2 + \beta^2 = -2q,$$ $$\Leftrightarrow \alpha^2 + \beta^2 + 2\alpha\beta = 0,$$ $$\Leftrightarrow (\alpha + \beta)^2 = 0$$ $$\Leftrightarrow \alpha + \beta = 0$$ $$\Leftrightarrow \#E(F_q) = q + 1,$$ which proves the lemma. | q | $N_q(1)$ | Elliptic Curve | |----|----------|-----------------------| | 2 | 5 | $y^2 + y = x^3 + x$ | | 3 | 7 | $y^2 = x^3 + 2x + 1$ | | 5 | 10 | $y^2 = x^3 + 3$ | | 7 | 13 | $y^2 = x^3 + 3$ | | 11 | 18 | $y^2 = x^3 + x + 3$ | | 13 | 21 | $y^2 = x^3 + 4$ | | 17 | 26 | $y^2 = x^3 + 3x$ | | 19 | 28 | $y^2 = x^3 + 8$ | | 23 | 33 | $y^2 = x^3 + x + 11$ | | 29 | 40 | $y^2 = x^3 + 4x$ | | 31 | 43 | $y^2 = x^3 + 3$ | | 37 | 50 | $y^2 = x^3 + 2x$ | | 41 | 54 | $y^2 = x^3 + 2x + 4$ | | 43 | 57 | $y^2 = x^3 + 9$ | | 47 | 61 | $y^2 = x^3 + x + 38$ | | 53 | 68 | $y^2 = x^3 + x$ | | 59 | 75 | $y^2 = x^3 + 2x + 22$ | | 61 | 77 | $y^2 = x^3 + 6x + 29$ | | 67 | 84 | $y^2 = x^3 + 1$ | | 71 | 88 | $y^2 = x^3 + x + 9$ | | 73 | 91 | $y^2 = x^3 + 5$ | | 79 | 97 | $y^2 = x^3 + 3$ | | 83 | 102 | $y^2 = x^3 + 2x + 19$ | | 89 | 108 | $y^2 = x^3 + x + 8$ | | 97 | 117 | $y^2 = x^3 + 2$ | Table 1: List of Curves over prime fields More generally, any elliptic curve over F_q , having precisely q+1 rational points, will have $N_{q^{2s}}(1)=q^{2s}+1+2q^s$ rational points over the field $F_{q^{2s}}$, with s any odd integer. For q = p prime the existence of such an elliptic curve (i.e. having precisely p + 1 rational points) over F_p follows, as before, from the results of Deuring and of Waterhouse (see [4, Thm. 4.1]). To have explicit examples, first note that for p = 2, the equation $y^2 + y = x^3$ defines an elliptic curve with exactly 3 = p + 1 rational points over F_2 . Next, for every prime number $p \equiv 5 \mod (6)$ the equation $y^2 = x^3 + 1$ defines an elliptic curve with precisely p + 1 rational points over F_p . (This is well-known; compare, e.g., Exer. IV-4.10 in [3].) Similarly (see Exer. IV-4.8 in [3]) for every prime number $p \equiv 3 \mod (4)$ the equation $y^2 = x^3 + x$ defines an elliptic curve whose number of rational points over F_p equals p + 1. With these remarks, we have examples for every prime $p \le 19$ except p = 13. One has $\#E(F_{13}) = 14$ for the elliptic curve $E: y^2 = x^3 + x + 4$. This discussion is summarized in the Table 2. | p | $N_{p^2}(1)$ | Elliptic Curve | |----|--------------|---------------------| | 2 | 9 | $y^2 + y = x^3$ | | 3 | 16 | $y^2 = x^3 + x$ | | 5 | 36 | $y^2 = x^3 + 1$ | | 7 | 64 | $y^2 = x^3 + x$ | | 11 | 144 | $y^2 = x^3 + x$ | | 13 | 196 | $y^2 = x^3 + x + 4$ | | 17 | 324 | $y^2 = x^3 + 1$ | | 19 | 400 | $y^2 = x^3 + x$ | Table 2 ## 4. FIELDS OF CARDINALITY p^3 Most of the curves given in the following Table 3 are found by a simple trick given in Section 7 and other by using the free mathematics software system Sage. Write $F_{p^3} = F_p[z]$ in which z satisfies g(z) = 0 for a monic irreducible $g \in F_p[X]$ of degree 3. Note that if E is defined over F_{p^3} , then the p-power Frobenius map defines an isomorphism $E(F_{p^3}) \simeq E^{(p)}(F_{p^3})$. Here $E^{(p)}$ denotes the elliptic curve obtained from E by raising the coefficients of its equation to the power p. In particular, in an equation involving z the number of points does not depend on which zero of g in $F_{p}[z]$ is taken. | p | $N_{p^3}(1)$ | Elliptic Curve | Minimal Polynomial of z | |----|--------------|------------------------------|-------------------------| | 2 | 14 | $y^2 + xy + y = x^3 + 1$ | | | 3 | 38 | $y^2 = x^3 + 2x^2 + 2x$ | | | 5 | 148 | $y^2 = x^3 + x + 2$ | | | 7 | 381 | $y^2 = x^3 + z^2$ | $X^3 + 6X^2 + 4$ | | 11 | 1404 | $y^2 = x^3 + x + 4$ | | | 13 | 2291 | $y^2 = x^3 + z^2 x + z^{75}$ | $X^3 + 2X + 11$ | | 17 | 5054 | $y^2 = x^3 + x + 4$ | | | 19 | 7025 | $y^2 = x^3 + z^2 x + z^9$ | $X^3 + 4X + 17$ | Table 3 ## 5. FIELDS OF CARDINALITY p^4 If an elliptic curve E over a finite field F_q satisfies $\#E(F_q)=q+1$, then as in Lemma 3.1, $\#E(F_{q^4})=q^4+1-2q^2$. This implies that a quadratic twist E^{tw} of E over F_{q^4} satisfies $\#E^{tw}(F_{q^4})=q^4+1+2q^2=N_{q^4}(1)$, by the following two lemmas. **Lemma 5.1** Suppose q is odd, and let C/F_q be the hyperelliptic curve corresponding to an equation $y^2 = f(x)$ with $f \in F_q[X]$ square free. Suppose $\alpha \in F_q^*$ is not a square and define the hyper-elliptic curve C^{tw}/F_q corresponding to the equation $\alpha y^2 = f(x)$. Then $$\#C(F_q) + \#C^{hv}(F_q) = 2q + 2.$$ **Proof** For $x_0 \in F_q$. If $f(x_0) = 0$, then this contributes one point to both curves. If $f(x_0) \in F^{*2}_q$, then this contributes 2 points to C and 0 points to C^{tw} . If $f(x_0) \in F_q^* \backslash F_q^{*2}$, then this contributes 0 points to C and 2 points to C^{tw} . Finally, consider points at infinity. If f has odd degree, then both C and C^{tw} have one rational point at infinity. If f has even degree and leading coefficient in F_q^{*2} , then C has 2 points at infinity while C^{tw} has no point at infinity. In the remaining case C^{tw} has 2 points and C has none. Therefore $\#C(F_q) + C^{tw}(F_q) = 2q + 2$. Now if $E: y^2 = x^3 + Ax + B$ is an elliptic curve over odd finite field F_q and satisfies $\#E(F_q) = q + 1$, then $\#E(F_{q^4}) = q^4 + 1 - 2q^2$. Take an $\alpha \in \mathbb{F}_{q^4}^*$, not a square, we make another curve $$E^{tw}: \alpha y^2 = x^3 + Ax + B$$ equivalently $E^{\ell w}$: $y^2 = x^3 + \alpha^2 A x + \alpha^3 B$ (see Exer. 2.23 and 4.10 in [5]). Then $$#E(F_{a^4}) + #E^{tw}(F_{a^4}) = 2q^4 + 2,$$ Therefore, $$#E^{tw}(F_{q^4}) = q^4 + 1 + 2q^2$$, hence E^{tw} is the required maximal elliptic curve over F_{σ^4} . **Lemma 5.2** Suppose $q = 2^n$. Then a generalized Weierstrass equation for an elliptic curve over F_a is $$E: y^{2} + (a_{1}x + a_{3})y = f(x)$$ (1) with f(x) monic of degree 3. The quadratic twist isomorphic to (1) over $F_{q^2} = F_q(\beta)$, where β satisfies an irreducible polynomial $X^2 + X + a = 0$ for some $a \in F_q$, is $$E^{tw}: \eta^2 + (a_1x + a_3)\eta = f(x) + a(a_1x + a_3)^2.$$ (2) It satisfies $$#E(F_q) + #E^{tw}(F_q) = 2q + 2.$$ **Proof** Take $x_0 \in F_q$. Let $a_1x_0 + a_3 = \xi$ and $f(x_0) = \delta$. First suppose $\delta = 0$. If $\xi = 0$ we obtain one point on both E and E^{tw} . If $\xi \neq 0$ then the equations (1) and (2) at x_0 give $$y^2 + \xi y = 0, (3)$$ $$\eta^2 + \xi \eta = a\xi^2. \tag{4}$$ Clearly (3) has precisely 2 solutions, namely y=0 and $y=\xi$. The equation (4) has no solution $\eta \in F_q$, since if $\eta \in F_q$ would be a solution then $\frac{\eta}{\xi} \in F_q$ would be a zero of $X^2+X+a=0$, which is assumed to be irreducible. Now suppose $\delta \neq 0$. If $\xi = 0$ we obtain one point on both E and E^{tw} . If $\xi \neq 0$ then the Equations (1) and (2) at x_0 give $$y^2 + \xi y = \delta, \tag{5}$$ $$\eta^2 + \xi \eta = \delta + a\xi^2. \tag{6}$$ If both Equations (5) and (6) would have a solution yand $\eta \in F_q$ respectively, then $\frac{y+\eta}{\xi} \in F_q$ would be a zero of $X^2 + X + \alpha = 0$ which is not possible. Now Suppose the Equation (5) has no solution in F_q . Then it has 2 solutions in $F_{q^2} = F_q(\beta)$. Let $y_0 = y_1 + y_2\beta$, where $y_1, y_2 \in F_q$ and $y_2 \neq 0$, be one of the solutions of the Equation (5) in F_{q^2} . Hence $$(y_1 + y_2\beta)^2 + \xi(y_1 + y_2\beta) = \delta,$$ which can be written as $$y_1^2 + y_2^2 \beta + y_2^2 a + y_1 \xi + y_2 \beta \xi = \delta,$$ (7) comparing coefficients of β shows $$y_2^2 + \xi y_2 = 0$$ so $y_2 = \xi$. So the equation (7) gives $$y_1^2 + \xi y_1 = a\xi^2$$, hence y_1 is a solution of the Equation (4). Finally, both the curves have one point at infinity. Therefore $\#E(F_q) + \#E^{tw}(F_q) = 2q + 2$. For instance, for q=p odd we have the curves over F_p , with precisely p+1 rational points, in the table of Section 3. Take a curve $E\colon y^{\wedge}2=x^3+x$ having $\#E(F_3)=4$ and $\alpha=z\in F_{3^4}\}$ satisfying $z^4+2z^3+2=0$. Then z is not square in F_{3^4} , since $X^8+2X^6+2\in F_3[X]$ is irreducible. Hence $E^{tw}\colon zy^2=x^3+x$ equivalently $E^{tw}\colon y^2=x^3+z^2x$ is the required elliptic curve over F_{3^4} with $\#E(F_{3^4})=N_{3^{\wedge}4}(1)=100$. For q=2, the curve $E\colon y^2+y=x^3$ has $\#E(F_2)=3$. Write $F_{2^4}=F_2[z]$ in which z satisfies $z^4+z+1=0$. Then quadratic twist of this curve $L=F_{2^4}(\beta)$, where β satisfies irreducible polynomial X^2+X+z^3 , will be $$E^{tw}: y^2 + y = x^3 + z^3$$. and it has the maximum possible number of point over $K = F_{2^4}$. This discussion is summarized in the Table 4. | p | $N_{p^4}(1)$ | Elliptic Curve | Minimal Polynomial of z | |----|--------------|----------------------------|-------------------------| | 2 | 25 | $y^2 + y = x^3 + z^3$ | $X^4 + X + 1$ | | 3 | 100 | $y^2 = x^3 + z^2 x$ | $X^4 + 2X^3 + 2$ | | 5 | 676 | $y^2 = x^3 + z^3$ | $X^4 + 4X^2 + 4X + 2$ | | 7 | 2500 | $y^2 = x^3 + z^2 x$ | $X^4 + 5X^2 + 4X + 3$ | | 11 | 14884 | $y^2 = x^3 + z^2 x$ | $X^4 + 8X^2 + 10X + 2$ | | 13 | 28900 | $y^2 = x^3 + z^2 x + 4z^3$ | $X^4 + 3X^2 + 12X + 2$ | | 17 | 84100 | $y^2 = x^3 + z^3$ | $X^4 + 7X^2 + 10X + 3$ | | 19 | 131044 | $y^2 = x^3 + z^{2}x$ | $X^4 + 2X^2 + 11X + 2$ | Table 4 # 6. FIELDS OF CARDINALITY p^5 From the elliptic curves over the field with cardinality p^5 in the following Table 5 some are found by using the trick given in Section 7 and some by using free mathematics software system Sage. | p | $N_{p^5}(1)$ | Elliptic Curve | Minimal Polynomial of z | |----|--------------|--|-------------------------| | 2 | 44 | $y^2 + xy + y = x^3 + x^2 + x$ | | | 3 | 275 | $y^2 = x^3 + 2x^2 + x + 1$ | | | 5 | 3237 | $y^2 = x^3 + z^{97}x + 1$ | $X^5 + 4X + 3$ | | 7 | 17066 | $y^2 = x^3 + x + z^{601}$ | $X^5 + X + 4$ | | 11 | 161854 | $y^2 = x^3 + x + 1$ | | | 13 | 372512 | $x^3 + zx + z^{333760}$ | $X^5 + 4X + 11$ | | 17 | 1422241 | $y^2 = x^3 + \frac{3}{4}x^2 + z^{1351944}x + z^{198311}$ | $X^5 + X + 14$ | | 19 | 2479247 | $y^2 = x^3 + \frac{1}{4}x^2 + z^{508237}x + z^{1608725}$ | $X^5 + 5X + 17$ | Table 5 ## 7. A TRICK By Chap. 4, Sec. 3 in [5], if we have a curve E/F_q with $\#E(F_q)=N$, then we can find the number of point of the same curve over F_{q^n} . Namely write N=q+1-a and α , $\beta\in C$ be the zero's of $X^{\wedge}2-aX+q$. Then $\#E(F_{q^n})=q^n+1-\alpha^n-\beta^n$. **Example 7.1** The curve $E: y^2 = x^3 + 2x^2 + 2$ has $\#E(F_3) = 2$, then we can write $\#E(F_3) = 3 + 1 - 2$, therefore a = 2, then by [Chap. 4, Sec. 3 in [5], we have $\alpha = 1 + i\sqrt{2}$, $\beta = 1 - i\sqrt{2}$. Then $$\#E(F_{3^3}) = 3^3 + 1 - (1 + i\sqrt{2})^3 - (1 - i\sqrt{2})^3 = 38 = N_{3^3}$$ (1). By this trick we can find some maximal curves over F_{p^3} and F_{p^5} with coefficients from F_p . | p | $\#E/F_p$ | $N_p^3(1)$ | equation | |----|-----------|------------|----------------------------| | 2 | 2 | 14 | $y^2 + xy = x^3 + x^2 + x$ | | 3 | 2 | 38 | $y^2 = x^3 + 2x^2 + 2$ | | 5 | 4 | 148 | $y^2 = x^3 + x + 2$ | | 11 | 9 | 1404 | $y^2 = x^3 + x + 4$ | | 17 | 14 | 5054 | $y^2 = x^3 + x + 3$ | Table 6 Also | p | $\#E/F_p$ | $N_{p^5}(1)$ | equation | |----|-----------|--------------|--------------------------------| | 2 | 4 | 44 | $y^2 + xy + y = x^3 + x^2 + x$ | | 3 | 5 | 275 | $y^2 = x^3 + 2x^2 + 1$ | | 11 | 14 | 161854 | $y^2 = x^3 + x + 1.$ | Table 7 ## REFERENCES [1] J. P. Serre, Rational points on curves over finite fields.Unpublishe d Notes by F.Q. Gouvea of lectures at Harvard University, 1985. - [2] J.H. Silverman, The arithmetic of elliptic curves. Graduate Texts in Mathematics 106, Springer Verlag, New York, 1986. - [3] J.H. Silverman and J. Tate, Rational points on elli ptic curves. Undergraduate Texts in Mathematics, Spri nger-Verlag, New York, 1992. - [4] W.C. Waterhouse, Abelian varieties over finite fields, Ann. sci. de - [5] Lawrence C. Washington, Elliptic Curves Number Theryoy and Cryptography, by Taylor & Francis Group, LLC, University of Maryland College Park, Maryland, U.S.A, second edition (2008).